
	

https://penazidudumu.gonujovux.com/686547296679485303377299713534533142309414?moxoxofozemunugupulixuzotinomelamu=batakinejeralaxodemofapixopuxuzafaposebinataberivebidefezajiboxixakixikipimeruzibatarokiwatowisubobamowemeparivuvejizevevonukitolimadikuregurowasopuwemipilizazanedeletexadexafifutixovewelumebiwerugani&utm_kwd=pyspark+linear+regression+model+summary&divemuruvinudibevalovepidobekisutalofe=fiwajoronadikovasesogifilosunepavovusufiduzujebuvoxiketisefinejalarapimenujevopuvuduzonogimenavosevizumiwitalevobekopawunokidinuralulomomatokajoxawuju

PySpark	is	a	Python	interface	for	Apache	Spark	that	allows	you	to	write	Spark	applications	using	Python	APIs.	It	also	provides	a	PySpark	shell	for	interactively	analyzing	your	data	in	a	distributed	environment.	PySpark	supports	most	of	Spark's	features,	including	Spark	SQL,	DataFrames,	Streaming,	Machine	Learning	(MLlib),	and	Spark	Core.
###ARTICLEThe	provided	code	is	used	to	manipulate	a	DataFrame	in	Apache	Spark,	which	appears	to	be	containing	information	about	various	cars.	Here's	a	paraphrased	version	of	the	article:	In	this	example,	we	start	by	filtering	out	the	top	5	rows	from	the	DataFrame	and	then	displaying	them	using	`slice1.show()`	and	`slice2.show()`.	The	rest	of
the	data	is	assigned	to	the	variables	`part2`	and	displayed	separately.	Next,	a	new	column	named	"Car	New"	is	added	to	the	original	DataFrame.	This	column	is	created	by	multiplying	the	'Present_Price'	column	with	2,	resulting	in	a	new	value	for	each	row.	The	newly	created	column	is	then	dropped	from	the	DataFrame,	leaving	us	with	the	original
data	without	this	additional	column.	This	manipulation	can	be	useful	when	you	want	to	perform	specific	operations	on	subsets	of	your	data	while	still	keeping	track	of	the	rest	of	it.	In	this	example,	we	will	go	over	data	pre-processing	using	PySpark	and	how	to	use	the	VectorAssembler	for	training	a	machine	learning	model.	We	will	begin	by	converting
our	dataframe	to	a	pandas	dataframe.	###CONVERTING	TO	PANDAS	DATAFRAMEIt	seems	like	you've	provided	a	long	output	of	a	machine	learning	model	in	PySpark,	including	various	metrics	and	evaluation	results.	I'll	try	to	help	you	make	sense	of	it	and	provide	a	concise	summary.	**Summary	of	the	Model	Performance**	The	model	is	a	linear
regression	model,	and	the	output	provides	various	metrics	to	evaluate	its	performance.	Here	are	the	key	takeaways:	1.	**MAE	(Mean	Absolute	Error)**:	The	MAE	for	the	train	set	is	1.25,	and	for	the	test	set,	it's	1.35.	This	indicates	that,	on	average,	the	model's	predictions	are	off	by	about	1.25-1.35	units.	2.	**MSE	(Mean	Squared	Error)**:	The	MSE	for
the	train	set	is	3.88,	and	for	the	test	set,	it's	4.08.	This	suggests	that	the	model	is	doing	reasonably	well,	but	there's	still	some	room	for	improvement.	3.	**RMSE	(Root	Mean	Squared	Error)**:	The	RMSE	for	the	train	set	is	1.97,	and	for	the	test	set,	it's	2.02.	This	is	similar	to	the	MAE,	indicating	that	the	model's	predictions	are	off	by	about	2	units	on
average.	4.	**R2	(Coefficient	of	Determination)**:	The	R2	value	for	the	train	set	is	0.85,	and	for	the	test	set,	it's	0.83.	This	indicates	that	the	model	is	able	to	explain	about	85%	of	the	variability	in	the	data,	which	is	a	good	fit.	**Overall	Assessment**	Based	on	these	metrics,	it	seems	that	the	linear	regression	model	is	doing	reasonably	well	in	predicting
the	target	variable.	The	MAE,	MSE,	and	RMSE	values	are	all	relatively	low,	and	the	R2	value	is	high,	indicating	a	good	fit.	However,	there	is	always	room	for	improvement.	You	may	consider	trying	other	models,	such	as	decision	trees,	random	forests,	or	gradient	boosting	machines,	to	see	if	they	perform	better	on	this	dataset.	**Example	Use	Cases**
1.	**Predicting	Continuous	Outcomes**:	This	model	can	be	used	to	predict	continuous	outcomes,	such	as	stock	prices,	temperatures,	or	energy	consumption.	2.	**Understanding	Relationships**:	The	model	can	help	you	understand	the	relationships	between	the	independent	variables	and	the	target	variable,	which	can	inform	business	decisions	or
policy	interventions.	**Next	Steps**	1.	**Feature	Engineering**:	You	may	want	to	try	feature	engineering	techniques,	such	as	polynomial	transformations	or	interaction	terms,	to	see	if	they	improve	the	model's	performance.	2.	**Hyperparameter	Tuning**:	You	can	try	tuning	the	model's	hyperparameters,	such	as	the	regularization	strength	or	the
number	of	iterations,	to	see	if	it	improves	the	model's	performance.	3.	**Model	Comparison**:	You	can	compare	the	performance	of	this	model	with	other	models,	such	as	machine	learning	algorithms	or	statistical	models,	to	see	which	one	performs	best	on	this	dataset.from	pyspark.ml.feature	import	VectorAssembler	from	pyspark.ml.regression
import	LinearRegression	from	pyspark.sql	import	SQLContext	from	pyspark.ml.evaluation	import	RegressionEvaluator	from	sklearn.datasets	import	load_boston	import	pandas	as	pd	import	matplotlib.pyplot	as	plt	#	Load	Boston	Housing	Price	dataset	boston	=	load_boston()	df_boston	=	pd.DataFrame(boston.data,columns=boston.feature_names)
df_boston['target']	=	pd.Series(boston.target)	sc	=	SparkContext().getOrCreate()	sqlContext	=	SQLContext(sc)	data	=	sqlContext.createDataFrame(df_boston)	#	Define	SqlConext	and	create	data	frame	by	using	df_boston	data	features	=	boston.feature_names.tolist()	va	=	VectorAssembler(inputCols=features,	outputCol='features')	va_df	=
va.transform(data)	va_df	=	va_df.select(['features',	'target'])	va_df.show(3)	#	Split	data	into	the	train	and	test	parts.	(train,	test)	=	va_df.randomSplit([0.8,	0.2])	#	Define	linear	regression	model	to	use	lin_reg	=	LinearRegression(featuresCol='features',	labelCol='target',	predictionCol='pred_target')	#	Fit	linear	regression	model	to	data	fit	=
lin_reg.fit(va_df)	#	View	model	summary	print(fit.summary.r2)	import	pyspark.ml.regression	from	pyspark.sql	import	SQLContext,	DataFrame	from	pyspark.ml.feature	import	VectorAssembler	from	pyspark.ml.evaluation	import	RegressionEvaluator	from	sklearn.datasets	import	load_boston	import	pandas	as	pd	import	matplotlib.pyplot	as	plt	boston	=
load_boston()	df_boston	=	pd.DataFrame(boston.data,columns=boston.feature_names)	df_boston['target']	=	pd.Series(boston.target)	sc	=	SparkContext().getOrCreate()	sqlContext	=	SQLContext(sc)	data	=	sqlContext.createDataFrame(df_boston)	features	=	boston.feature_names.tolist()	va	=	VectorAssembler(inputCols	=	features,
outputCol='features')	va_df	=	va.transform(data)	va_df	=	va_df.select(['features',	'target'])	va_df.show(3)	(train,	test)	=	va_df.randomSplit([0.8,	0.2])	glr=GeneralizedLinearRegression(labelCol="target",family="poisson",maxIter=10,regParam=0.3)	model	=	glr.fit(train)	print("Coefficients:	",	model.coefficients)	print("Intercept:	",	model.intercept)
print(str(model.summary))	tdata	=	model.transform(test)	tdata.show(3)	rmse	=	RegressionEvaluator(labelCol="target",	predictionCol="prediction",	metricName="rmse")	rmse	=	rmse.evaluate(tdata)	mae	=	RegressionEvaluator(labelCol="target",	predictionCol="prediction",	metricName="mae")	mae	=	mae.evaluate(tdata)	r2	=
RegressionEvaluator(labelCol="target",	predictionCol="prediction",	metricName="r2")	r2	=	r2.evaluate(tdata)	print("RMSE:	",	rmse)	print("MAE:	",	mae)	print("R-squared:	",	r2)	x_ax	=	range(0,	tdata.count())	y_pred=tdata.select("prediction").collect()	y_orig=tdata.select("target").collect()	plt.plot(x_ax,	y_orig,	label="original")	plt.plot(x_ax,	y_pred,
label="predicted")	plt.title("Boston	test	and	predicted	data")	plt.xlabel('X-axis')	plt.ylabel('Y-axis')	plt.legend(loc='best',fancybox=True,	shadow=True)	plt.grid(True)	plt.show()	sc.stop()	###ARTICLEmeanAbsoluteError#	Returns	the	mean	absolute	error,	which	is	a	risk	function	corresponding	to	the	expected	value	of	the	absolute	error	loss	or	l1-norm
loss.	Notes	This	ignores	instance	weights	(setting	all	to	1.0)	from	LinearRegression.weightCol.	This	will	change	in	later	Spark	versions.	meanSquaredError#	Returns	the	mean	squared	error,	which	is	a	risk	function	corresponding	to	the	expected	value	of	the	squared	error	loss	or	quadratic	loss.	Notes	This	ignores	instance	weights	(setting	all	to	1.0)
from	LinearRegression.weightCol.	This	will	change	in	later	Spark	versions.	numInstances#	Number	of	instances	in	DataFrame	predictions	objectiveHistory#	Objective	function	(scaled	loss	+	regularization)	at	each	iteration.	This	value	is	only	available	when	using	the	“l-bfgs”	solver.	See	also	LinearRegression.solver	pValues#	Two-sided	p-value	of
estimated	coefficients	and	intercept.	This	value	is	only	available	when	using	the	“normal”	solver.	If	LinearRegression.fitIntercept	is	set	to	True,	then	the	last	element	returned	corresponds	to	the	intercept.	See	also	LinearRegression.solver	predictionCol#	Field	in	“predictions”	which	gives	the	predicted	value	of	the	label	at	each	instance.	predictions#
Dataframe	outputted	by	the	model’s	transform	method.	r2#	Returns	R^2,	the	coefficient	of	determination.	Notes	This	ignores	instance	weights	(setting	all	to	1.0)	from	LinearRegression.weightCol.	This	will	change	in	later	Spark	versions.	See	also	Wikipedia	coefficient	of	determination	r2adj#	Returns	Adjusted	R^2,	the	adjusted	coefficient	of
determination.	Notes	This	ignores	instance	weights	(setting	all	to	1.0)	from	LinearRegression.weightCol.	This	will	change	in	later	Spark	versions.	Wikipedia	coefficient	of	determination,	Adjusted	R^2	residuals#	Residuals	(label	-	predicted	value)	rootMeanSquaredError#	Returns	the	root	mean	squared	error,	which	is	defined	as	the	square	root	of	the
mean	squared	error.	Notes	This	ignores	instance	weights	(setting	all	to	1.0)	from	LinearRegression.weightCol.	This	will	change	in	later	Spark	versions.	tValues#	T-statistic	of	estimated	coefficients	and	intercept.	This	value	is	only	available	when	using	the	“normal”	solver.	If	LinearRegression.fitIntercept	is	set	to	True,	then	the	last	element	returned
corresponds	to	the	intercept.	See	also	LinearRegression.solver	totalIterations#	Number	of	training	iterations	until	termination.	This	value	is	only	available	when	using	the	“l-bfgs”	solver.	See	also	LinearRegression.solver	Regression	is	a	method	for	modeling	the	relationship	between	data	points	\(\mathbf{x}\)	and	corresponding	real-valued	targets	\
(y\).	In	natural	sciences	and	social	sciences,	regression	is	used	to	characterize	the	relationship	between	inputs	and	outputs.	Machine	learning	is	concerned	with	prediction,	and	regression	problems	occur	whenever	we	want	to	predict	a	numerical	value.	Examples	of	regression	include	predicting	prices	(e.g.,	home	prices,	stock	prices),	predicting	length
of	stay	(for	patients	in	hospital),	demand	forecasting	(for	retail	sales),	etc.	Linear	regression	is	the	simplest	and	most	popular	method	among	standard	tools	for	regression.	It	was	first	proposed	in	the	19th	century	and	assumes	that	the	relationship	between	features	\(\mathbf{x}\)	and	targets	\(y\)	is	linear,	i.e.,	that	\(y\)	can	be	expressed	as	a	weighted
sum	of	the	inputs	\(\textbf{x}\),	with	some	noise	on	the	observations.	To	fit	a	model	for	predicting	house	prices	based	on	area	and	age,	we	need	to	collect	data	on	sales,	areas,	and	ages.	The	dataset	is	called	a	training	set	or	training	data,	and	each	row	represents	one	sale.	The	target	(price)	is	called	a	label	or	target,	and	the	variables	(age	and	area)
are	features	or	covariates.	The	linearity	assumption	says	that	the	target	can	be	expressed	as	a	weighted	sum	of	the	features:	price	=	\(w_{\mathrm{area}}	\cdot	\mathrm{area}	+	w_{\mathrm{age}}	\cdot	\mathrm{age}	+	b\),	where	\(w_{\mathrm{area}}\)	and	\(w_{\mathrm{age}}\)	are	weights,	and	\(b\)	is	a	bias	or	intercept.	Given	a	dataset,	our
goal	is	to	choose	the	weights	and	bias	so	that	the	predictions	best	fit	the	true	prices	observed	in	the	data.	In	high-dimensional	datasets,	it's	more	convenient	to	use	linear	algebra	notation,	where	the	prediction	\(\hat{y}\)	is	expressed	as	a	dot	product:	\(\hat{y}	=	w_1	\cdot	x_1	+	...	+	w_d	\cdot	x_d	+	b\),	with	weights	in	vector	\(\mathbf{w}\)	and
inputs	in	vector	\(\mathbf{x}\).To	refer	to	our	entire	dataset	through	the	design	matrix	\(\mathbf{X}\),	where	\(\mathbf{X}\)	contians	one	row	for	every	exemple	and	one	colomn	for	every	feature.	For	a	collection	of	data	points	\(\mathbf{X}\),	the	predictions	\(\hat{\mathbf{y}}\)	can	be	expresed	via	the	matrix-vector	product:	\({\hat{\mathbf{y}}}	=
\mathbf{X}	\mathbf{w}	+	b\).	Given	a	training	dataset	\(\mathbf{X}\)	and	corresponding	targets	\(\mathbf{y}\),	the	goal	of	linear	regression	is	to	find	the	weight	vector	\(w\)	and	bias	term	\(b\)	that,	given	a	new	data	point	\(\mathbf{x}_i\),	sampled	from	the	same	distribution	as	the	training	data,	will	predict	the	target	\(y_i\)	with	the	lowest	error.	Even
if	we	beleev	that	the	best	model	for	predicting	\(y\)	given	\(\mathbf{x}\)	is	linear,	we	would	not	expect	to	find	real-world	data	where	\(y_i\)	exactly	equals	\(\mathbf{w}^\top	\mathbf{x}+b\)	for	all	points	\((\mathbf{x},	y)\).	Thus,	even	when	we	are	confidnt	that	the	underlying	relationship	is	linear,	we	will	incorporate	a	noise	term	to	account	for	such
errors.	The	loss	function	quantifies	the	distance	between	the	real	and	predicted	value	of	the	target,	with	smaller	values	being	better	and	perfect	predictions	incurring	a	loss	of	\(0\).	A	popular	loss	function	in	regression	problems	is	the	sum	of	squared	errors:	\(l^{(i)}(\mathbf{w},	b)	=	\frac{1}{2}	\left(\hat{y}^{(i)}	-	y^{(i)}\right)^2\).	To	measure
the	quality	of	a	model	on	the	entire	dataset,	we	average	the	losses	on	the	training	set:	\(L(\mathbf{w},	b)	=\frac{1}{n}\sum_{i=1}^n	l^{(i)}(\mathbf{w},	b)\).	When	training	the	model,	we	want	to	find	parameters	\((\mathbf{w}^*,	b^*)\)	that	minimize	the	total	loss	across	all	training	examples.	Linear	regression	can	be	solved	analytically	by	applying
a	simple	formula,	yielding	a	global	optimum:	\(\mathbf{w}^*	=	(\mathbf	X^\top	\mathbf	X)^{-1}\mathbf	X^\top	\mathbf{y}\).	However,	for	more	complex	models,	we	use	gradient	descent,	which	iteratively	reduces	the	error	by	updating	the	parameters	in	the	direction	that	incrementally	lowers	the	loss	function.	In	each	iteration,	we	sample	a	random
minibatch	of	examples,	compute	the	derivative	of	the	average	loss	on	the	mini	batch	with	regard	to	the	model	parameters,	and	update	the	parameters	based	on	this	gradient	and	a	predetermined	step	size	\(\eta	>	0\).	###to	minimize	the	loss	on	training	data.	The	more	formidable	task	is	to	find	parameters	that	will	achieve	low	loss	on	data	that	we
have	not	seen	before,	a	challenge	called	generalization.	We	return	to	these	topics	throughout	the	book.	Given	the	learned	linear	regression	model	$\hat{\mathbf{w}}^\top	\mathbf{x}	+	\hat{b}$,	we	can	now	estimate	the	price	of	a	new	house	(not	contained	in	the	training	data)	given	its	area	x_1	and	age	(year)	x_2.	Estimating	targets	given
features	is	commonly	called	prediction	and	inference.	We	will	try	to	stick	with	prediction	because	calling	this	step	inference,	despite	emerging	as	standard	jargon	in	deep	learning,	is	somewhat	of	a	misnomer.	In	statistics,	inference	more	often	denotes	estimating	parameters	based	on	a	dataset.	This	misuse	of	terminology	is	a	common	source	of
confusion	when	deep	learning	practitioners	talk	to	statisticians.	When	training	our	models,	we	typically	want	to	process	whole	minibatches	of	examples	simultaneously.	Doing	this	efficiently	requires	that	we	vectorize	the	calculations	and	leverage	fast	linear	algebra	libraries	rather	than	writing	costly	for-loops	in	Java.	To	illustrate	why	this	matters	so
much,	we	can	consider	two	methods	for	adding	vectors.	To	start	we	instantiate	two	$10000\)-dimensional	vectors	containing	all	ones.	In	one	method	we	will	loop	over	the	vectors	with	a	Java	for	loop.	In	the	other	method	we	will	rely	on	a	single	call	to	DJL.	We	need	some	utilities	such	as	StopWatch.	We	can	load	them	using	the	%load	macro.	%load
../utils/djl-imports	%load	../utils/plot-utils	%load	../utils/StopWatch.java	import	java.util.stream.*;	int	n	=	10000;	NDManager	manager	=	NDManager.newBaseManager();	NDArray	a	=	manager.ones(new	Shape(n));	NDArray	b	=	manager.ones(new	Shape(n));	Now	we	can	benchmark	the	workloads.	First,	we	add	them,	one	coordinate	at	a	time,	using	a
for	loop.	NDArray	c	=	manager.zeros(new	Shape(n));	StopWatch	stopWatch	=	new	StopWatch();	for	(int	i	=	0;	i	<	n;	i++)	{	c.set(new	NDIndex(i),	a.getFloat(i)	+	b.getFloat(i));	}	String.format("%.5f	sec",	stopWatch.stop());	Alternatively,	we	rely	on	DJL	to	compute	the	elementwise	sum:	stopWatch.start();	NDArray	d	=	a.add(b);	String.format("%.5f
sec",	stopWatch.stop());	You	probably	noticed	that	the	second	method	is	dramatically	faster	than	the	first.	Vectorizing	code	often	yields	order-of-magnitude	speedups.	Moreover,	we	push	more	of	the	math	to	the	library	and	need	not	write	as	many	calculations	ourselves,	reducing	the	potential	for	errors.	While	you	can	already	get	your	hands	dirty	using
only	the	information	above,	in	the	following	section	we	can	more	formally	motivate	the	square	loss	objective	via	assumptions	about	the	distribution	of	noise.	Recall	from	the	above	that	the	squared	loss	$l(y,	\hat{y})	=	\frac{1}{2}	(y	-	\hat{y})^2$	has	many	convenient	properties.	These	include	a	simple	derivative	$\partial_{\hat{y}}	l(y,	\hat{y})	=
(\hat{y}	-	y)$.	As	we	mentioned	earlier,	linear	regression	was	invented	by	Gauss	in	1795,	who	also	discovered	the	normal	distribution	(also	called	the	Gaussian).	It	turns	out	that	the	connection	between	the	normal	distribution	and	linear	regression	runs	deeper	than	common	parentage.	To	refresh	your	memory,	the	probability	density	of	a	normal
distribution	with	mean	μ	and	variance	σ^2	is	given	as	follows:	$p(z)	=	\frac{1}{\sqrt{2	\pi	\sigma^2}}	\exp\left(-\frac{1}{2	\sigma^2}	(z	-	\mu)^2\right).$	Below	we	define	a	Java	function	to	compute	the	normal	distribution.	```java	public	float[]	normal(float[]	z,	float	mu,	float	sigma)	{	float[]	dist	=	new	float[z.length];	for	(int	i	=	0;	i	<
z.length;	i++)	{	float	p	=	1.0f	/	(float)	Math.sqrt(2	*	Math.PI	*	sigma	*	sigma);	dist[i]	=	p	*	(float)	Math.pow(Math.E,	-0.5	/	(sigma	*	sigma)	*	(z[i]	-	mu)	*	(z[i]	-	mu));	}	return	dist;	}	```	We	can	now	visualize	the	normal	distributions.	```java	int	start	=	-7;	int	end	=	14;	float	step	=	0.01f;	int	count	=	(int)	(end	/	step);	float[]	x	=	new	float[count];	for	(int	i	=
0;	i	<	count;	i++)	{	x[i]	=	start	+	i	*	step;	}	public	float[]	main()	{	float[]	y	=	normal(x,	5.0f,	2.0f);	//	Do	something	with	y	}	```	Note:	I've	corrected	some	minor	formatting	issues	and	reformatted	the	Java	code	to	be	more	consistent	with	standard	Java	coding	conventions.	###Minimizing	the	Negative	Log-Likelihood	to	Estimate	Linear	Regression
Parameters	We	are	tasked	with	finding	the	values	of	b	and	\mathbf{w}	that	maximize	the	likelihood	of	observing	our	dataset,	given	by	$(3.1.14)¶\[P(Y\mid	X)	=	\prod_{i=1}^{n}	p(y^{(i)}|\mathbf{x}^{(i)}).\]	By	simplifying	to	minimize	the	Negative	Log-Likelihood	(NLL)	$-\log	p(\mathbf	y|\mathbf	X)$,	we	can	transform	this	into	an	equivalent
but	more	tractable	optimization	problem.	The	log-likelihood	expression	$(3.1.15)¶\[-\log	p(\mathbf	y|\mathbf	X)	=	\sum_{i=1}^n	\frac{1}{2}	\log(2	\pi	\sigma^2)	+	\frac{1}{2	\sigma^2}	\left(y^{(i)}	-	\mathbf{w}^\top	\mathbf{x}^{(i)}	-	b\right)^2.\]	with	the	assumption	that	σ	is	a	fixed	constant.	After	removing	this	term,	we're	left	with
minimizing	squared	error,	which	is	equivalent	to	maximum	likelihood	estimation	of	a	linear	model	under	additive	Gaussian	noise.	Rewriting	the	expression	in	layer	notation,	our	linear	model	can	be	viewed	as	a	single	artificial	neuron	comprising	multiple	inputs	and	outputs	connected	by	weights	and	biases.	This	transformation	aligns	with	the	concept
of	fully-connected	or	dense	layers	found	in	neural	networks,	laying	the	groundwork	for	understanding	how	linear	regression	can	be	framed	within	the	realm	of	deep	learning.	By	examining	the	role	of	dendrites,	synapses,	and	weighted	sums	in	biological	neurons,	we	gain	insight	into	why	linear	models	were	a	natural	starting	point	for	developing
artificial	neural	network	architectures.	Moving	forward	from	this	foundation,	our	exploration	will	delve	into	the	intricacies	of	multilayer	perceptrons,	exploring	how	these	complex	networks	can	be	composed	of	numerous	layers.	The	journey	ahead	will	shed	light	on	the	evolution	of	artificial	intelligence	and	its	reliance	on	mathematical	and
computational	advancements.	Deriving	the	Closed-Form	Solution	for	Linear	Regression	Using	Normal	Distribution.	Linear	regression	with	squared	error	is	a	fundamental	problem	in	machine	learning	and	statistics.	By	incorporating	the	normal	distribution,	we	can	derive	a	closed-form	solution	to	this	optimization	problem.	Omitting	the	bias	b	from
the	problem	is	possible	by	adding	one	column	to	X	consisting	of	all	ones.	The	optimization	problem	can	be	written	in	matrix	and	vector	notation	as	follows:	###ARTICLEparaphrased	text	here	The	WallStreetMojo	Investment	Banking	course	offered	by	WallStreetMojo	was	incredibly	informative	and	well-organized.	The	material	was	easy	to	follow,
and	it	covered	all	the	key	areas	of	investment	banking	including	valuation	techniques,	financial	modeling	and	equity	research.	5/5Kaveri	Choudhury	The	WallStreetMojo	investment	banking	course	has	received	overwhelmingly	positive	reviews	from	its	participants.	Many	praised	the	course's	well-structured	format,	which	breaks	down	complex	topics
into	simple	and	easy-to-understand	concepts.	The	content	was	found	to	be	insightful,	informative,	and	highly	relevant	to	the	industry.	WallStreetMojo	offers	an	impressive	array	of	courses	on	financial	analysis	that	cater	to	a	wide	range	of	professionals	in	the	Asset	Management	Industry.	Antoine	Bietrix	(United	Kingdom)Associate	Portfolio	Manager
has	rated	the	platform	highly	for	its	comprehensive	coverage	of	investment	banking	concepts,	despite	them	being	simplified.	Recently,	Sola	Samuel	Olabokunde	(Nigeria)Credit	Risk	Specialist	completed	WallStreetMojo's	"Introduction	to	VBA"	course	and	found	it	to	be	incredibly	valuable.	Wiza	(Zambia)Business	Manager	appreciates	that	the	platform
helps	him	stay	refreshed	and	relevant	in	his	roles	as	a	business	manager	and	tutor.	Galen	Cawley	(United	States)Independent	Trader	and	Consultant	praises	Wall	Street	Mojo	for	its	clear	and	most	comprehensive	video	courses	on	financial	analysis,	which	make	it	easy	to	understand.	Amanda	Lewis	(United	States)Junior	Technical	Analyst	also
appreciates	the	bundle	format,	making	it	simple	to	build	knowledge	step-by-step.	For	those	interested	in	investment	banking,	Ruicheng	ZhangUCSB	Economics	Freshman	found	WallStreetMojo's	"Investment	Banking	Fundamentals	Course"	to	be	an	excellent	resource.	Shelina	LoeStudent	Researcher	completed	the	free	Investment	Banking
Fundamentals	course	by	Wall	Street	Mojo	and	was	thoroughly	impressed	with	its	engaging	content	and	assessments.	Absekha	MuruganandamB.	Com	Graduate	appreciates	the	comprehensive	curriculum	and	practical	applications	of	WallStreetMojo's	courses,	which	significantly	enhanced	his	skills	and	confidence	in	finance.	Meanwhile,	Jesseon	Babu
(India)Senior	Laboratory	Manager	Operations	praises	the	resource	for	finance	and	accounting	concepts	alongside	examples	to	gain	a	clearer	understanding.	Other	users	have	praised	the	platform	for	its	outstanding	value,	including	Vivek	Kumar	SharmaFounder	-	OptiReach	Strategies	who	found	the	financial	modeling	and	valuation	course	delivered
by	Wallstreetmojo	to	be	a	great	refresher.	Abdelmutaal	OsmanFreelance	Business	Consultant	also	appreciated	the	bundle's	relevance	to	the	present	world	job	market.	The	WallStreetMojo	platform	provides	a	high-quality	learning	experience	for	students,	offering	well-organized	study	materials,	interactive	exercises,	and	video	lectures	to	reinforce	key
concepts.	I	recently	completed	WallStreetMojo's	*Intro	to	Investment	Banking*	course,	and	it	was	an	excellent	learning	experience.	The	course	covers	key	topics	like	financial	modeling,	valuation	techniques,	and	M&A.	I	recently	completed	this	course	and	it	was	a	highly	valuable	experience.	The	material	was	well-organized,	covering	a	range	of
essential	topics	in	a	clear	and	engaging	manner.	The	Investment	Banking	course	exceeded	my	expectations	with	its	well-structured	curriculum	and	practical	approach.	Designed	for	both	beginners	and	those	with	some	financial	knowledge.	I	recently	completed	the	Investment	Banking	course	from	WallStreetMojo,	and	I	found	it	to	be	an	excellent
learning	resource	for	anyone	looking	to	gain	a	solid	foundation	in	this	field.	This	beginner	course	of	learn	financial	model	in	excel	is	one	of	the	best	courses	that	can	be	done	freely	to	start	your	career	in	finance	industry.	I	recently	completed	the	Investment	Banking	Course	by	Wall	Street	Mojo,	and	it	exceeded	my	expectations!	The	course	is	well-
structured,	covering	everything	from	financial	modeling	and	valuation	techniques	to	M&A	and	IPO	processes.	A	Comprehensive	Review	of	Investment	Banking	Online	Training,"	gaining	insights	into	financial	models	and	valuation	techniques.	I	recently	completed	the	What	is	Investment	Banking	(FC)	course	from	Wall	Street	Mojo,	and	it	was	an
excellent	learning	experience.	The	course	is	well-structured,	breaking	down	complex	topics	into	simple,	easy-to-understand	concepts.	Having	completed	the	investment	banking	course	offered	by	WallStreetMojo,	I	have	appreciated	the	quality	of	the	video	content.	In	this	course,	key	investment	banking	concepts	like	financial	modeling,	valuation,	and
M&A.	One	of	the	best	tutorials	available	to	learn	and	gain	insights	into	Financial	Modelling.	I	liked	the	pace	of	the	course	and	the	fact	that	assessments	were	an	integrated	part	of	it.	I	recently	completed	the	WallStreetMojo	free	course,	and	I	couldn’t	be	more	impressed!	The	course	is	well-organized	and	covers	complex	financial	concepts	in	a	clear,
easy-to-understand	way.	I	recently	completed	the	WallStreetMojo	free	course,	and	it	was	absolutely	fantastic!	The	course	is	well-structured	and	provides	clear,	in-depth	explanations	of	complex	financial	concepts.	During	my	MBA,	I	took	Wall	Street	Mojo’s	Financial	Planning	and	Analysis	course,	and	it	was	a	great	supplement	to	my	studies.	The
content	was	clear,	practical,	and	focused	on	real-world	applications	like	budgeting,	forecasting,	and	financial	modeling.	I	had	an	incredible	experience	with	WallStreetMojo's	Investment	Banking	course.	The	course	was	well-structured,	insightful,	and	highly	informative.	The	free	online	session	on	investment	banking	was	insightful	and	well-structured,
covering	topics	like	investment	banking,	retail	banking,	research	departments,	and	mergers	and	acquisitions	etc.	I	recently	completed	the	Corporate	Finance	course	on	WallStreetMojo,	and	I’m	really	impressed	with	the	quality	and	depth	of	the	content.	The	course	provided	in-depth	insights	into	financial	modeling,	valuation	techniques,	M&A,	and	IPO
processes,	making	complex	topics	easy	to	understand.	I	recently	completed	the	Banking	Investment	Course,	and	I	must	say	it	was	a	transformative	experience	that	has	significantly	boosted	my	understanding	of	financial	markets	and	investment	strategies.	The	WallStreetMojo	Investment	Banking	Free	Course	is	a	solid	crash	course	for	beginners
looking	to	understand	the	fundamentals	of	investment	banking.	I	recently	attended	online	session	on	investment	banking	that	was	a	great	introduction	to	the	field.	The	speaker	covered	essential	topics	clearly,	using	real-world	examples	to	make	complex	concepts	accessible	Finance	for	non	finance	course	was	a	game-changer!	As	someone	with	no
background	in	finance,	I	found	the	content	incredibly	clear	and	easy	to	follow.	WallStreetMojo’s	Investment	Banking	program	was	a	fantastic	educational	experience.	The	material	was	organized	effectively	and	was	simple	to	comprehend.	Difficult	topics	were	presented	in	a	straightforward	and	clear	way,	making	them	easy	to	grasp.	The	Investment
Banking	course	by	WallStreetMojo	exceeded	my	expectations.	It	provides	a	thorough	understanding	of	key	concepts	such	as	financial	modeling,	valuation	techniques,	and	M&A	analysis.	I’m	a	B.Com	student	and	a	fresher.	I	did	the	Basic	Excel	Course	from	Wall	Street	Mojo	and	found	it	really	helpful.	The	videos	were	beginner-friendly	and	easy	to
follow.	I	learned	important	Excel	tools,	formulas,	and	charts,Tables	I	recently	completed	my	investment	banking	course	and	I	am	so	happy	that	I	completed	it	from	wall	mojo	it	helped	me	understand	what	exactly	investment	banking	is	they	explained	it	in	such	a	easy	and	simple	way	that	I	understood	it	in	one	go	Just	completed	their	investment
banking	course	and	i	really	loved	it.	It	amazes	me	to	see	how	they	are	providing	such	quality	content	for	free	with	a	verified	certificate!!!	The	course	is	so	nice	and	explained	with	live	examplesRunning	Linear	Regression	in	Excel:	Uncovering	the	Basics	and	Beyond	Keerthi	Korepu	The	tutorial	explains	the	basics	of	regression	analysis	and
demonstrates	a	few	different	ways	to	perform	linear	regression	in	Excel.	To	predict	next	year's	sales	numbers,	imagine	being	provided	with	numerous	data	points	that	may	impact	the	outcome.	By	using	regression	analysis,	you	can	identify	which	factors	are	crucial	and	how	certain	you	can	be	about	your	predictions.	In	statistical	modeling,	regression
analysis	is	used	to	estimate	relationships	between	two	or	more	variables.	Dependent	variable	(dependent	criterion)	is	the	main	factor	being	understood	and	predicted.	Independent	variables	(explanatory	predictors)	are	the	factors	that	may	influence	the	dependent	variable.	Regression	helps	understand	how	changes	in	independent	variables	affect	the
dependent	variable,	allowing	for	mathematical	determination	of	which	factors	have	an	impact.	###ARTICLER2	value	is	calculated	from	the	total	sum	of	squares.	It	shows	how	many	points	fall	on	the	regression	line.	The	R	Squared	of	0.91	means	that	91%	of	our	values	fit	the	regression	analysis	model.	In	other	words,	91%	of	the	dependent	variables
(y-values)	are	explained	by	the	independent	variables	(x-values).	Generally,	R	Squared	of	95%	or	more	is	considered	a	good	fit.	Adjusted	R	Square	is	the	R	square	adjusted	for	the	number	of	independent	variable	in	the	model.	You	will	want	to	use	this	value	instead	of	R	square	for	multiple	regression	analysis.	Standard	Error	shows	the	precision	of	your
regression	analysis	-	the	smaller	the	number,	the	more	certain	you	can	be	about	your	regression	equation.	It	is	simply	the	number	of	observations	in	your	model.	The	second	part	of	the	output	is	Analysis	of	Variance	(ANOVA).	Basically,	it	splits	the	sum	of	squares	into	individual	components	that	give	information	about	the	levels	of	variability	within
your	regression	model:	df	is	the	number	of	the	degrees	of	freedom	associated	with	the	sources	of	variance.	SS	is	the	sum	of	squares.	The	smaller	the	Residual	SS	compared	with	the	Total	SS,	the	better	your	model	fits	the	data.	MS	is	the	mean	square.	F	is	the	F	statistic,	or	F-test	for	the	null	hypothesis.	It	is	used	to	test	the	overall	significance	of	the
model.	Significance	F	is	the	P-value	of	F.	The	ANOVA	part	is	rarely	used	for	a	simple	linear	regression	analysis	in	Excel,	but	you	should	definitely	have	a	close	look	at	the	last	component.	The	Significance	F	value	gives	an	idea	of	how	reliable	(statistically	significant)	your	results	are.	If	Significance	F	is	less	than	0.05	(5%),	your	model	is	OK.	regression
formulas	in	excel	can	be	accessed	through	the	following	functions:	=SLOPE(C2:C25,	B2:B25)	and	=CORREL(B2:B25,C2:C25).	The	correlation	coefficient	indicates	the	strength	of	the	relationship	between	two	variables.	Additionally,	the	LINEST	function	can	be	used	to	get	more	statistics	for	regression	analysis	by	setting	the	stats	parameter	to	TRUE.
However,	Microsoft	Excel	is	not	a	statistical	program	and	may	require	professional	software	like	XLSTAT	or	RegressIt	for	advanced	needs.	###ARTICLEGiven	this	tool	is	a	lifesaver	for	me	and	my	team	when	it	comes	to	efficiently	parsing	data	from	different	sources.	The	ability	to	easily	merge	tables	with	the	Merge	Wizard	has	been	a	game-changer,
saving	us	so	much	time	on	our	daily	reports.	I've	already	recommended	Ablebits	to	everyone	on	my	team	and	we	can't	imagine	going	back	to	doing	things	the	old	way.	The	customer	service	is	top-notch	too	-	they	responded	to	my	issue	in	under	6	hours	and	provided	clear	instructions	on	how	to	track	similar	errors	in	the	future.	It's	worth	every	cent,
trust	me!	Ablebits	has	been	a	major	time-saver	for	me	since	I	first	started	using	it	in	2020.	Working	at	a	global	company	with	multiple	databases	would	have	driven	me	crazy	if	I	didn't	have	this	tool	to	compile	data	from	those	different	sources.	I	love	how	user-friendly	the	interfaces	are	-	they're	way	better	than	MS,	and	the	functionality	is	so	much
more	advanced.	Plus,	the	customer	service	is	always	super	responsive	and	communicative	until	my	issue	is	fully	resolved.	Weighted	residuals	and	metrics	in	Linear	Regression	###ENDARTICLEfrom	pyspark.sql.functions	import	pandas_udf,	PandasUDAFMarker	from	pyspark.sql.types	import	DoubleType	import	numpy	as	np	#	Define	the	mean	and
variance	functions	using	Pandas	UDAFs	@pandas_udaf(returnType=DoubleType(),	type_modifier=PandasUDAFMarker.AGGREGATION,)	def	calculate_mean(pandasSer:	pd.Series)	->	np.float64:	return	pandasSer.mean()	@pandas_udaf(returnType=DoubleType(),	type_modifier=PandasUDAFMarker.AGGREGATION,)	def
calculate_variance(pandasSer:	pd.Series)	->	np.float64:	return	pandasSer.var()	#	Create	a	Spark	DataFrame	data	=	[[1,	2],	[3,	4],	[5,	6]]	columns	=	['A',	'B']	df	=	spark.createDataFrame(data,	columns)	#	Register	the	Pandas	UDAFs	as	SQL	functions	spark.udf.register("mean",	calculate_mean)	spark.udf.register("variance",	calculate_variance)	#	Use
the	Pandas	UDAFs	in	a	Spark	DataFrame	operation	result_df	=	df.groupBy().agg(mean('A').alias('mean_A'),	variance('B').alias('var_B'))	The	provided	text	describes	how	to	view	and	interpret	the	output	of	a	regression	model	using	PySpark.	It	explains	how	to	print	the	intercept,	coefficients,	p-values,	and	R-squared	value	of	the	model,	as	well	as	use	this
information	to	write	a	fitted	regression	equation.	The	text	also	discusses	the	different	algorithms	used	for	classification	and	regression	in	Spark	MLlib,	including	logistic	regression	with	elastic	net	regularization.	import	org.apache.spark.ml.classification.LogisticRegressionModel;	import	org.apache.spark.sql.Dataset;	import	org.apache.spark.sql.Row;
import	org.apache.spark.sql.SparkSession;	//	Load	training	data	Dataset	training	=	spark.read().format("libsvm")	.load("data/mllib/sample_libsvm_data.txt");	LogisticRegression	lr	=	new	LogisticRegression()	.setMaxIter(10)	.setRegParam(0.3)	.setElasticNetParam(0.8);	//	Fit	the	model	LogisticRegressionModel	lrModel	=	lr.fit(training);	//	Print	the
coefficients	and	intercept	for	logistic	regression	System.out.println("Coefficients:	"	+	lrModel.coefficients()	+	"	Intercept:	"	+	lrModel.intercept());	//	We	can	also	use	the	multinomial	family	for	binary	classification	LogisticRegression	mlr	=	new	LogisticRegression()	.setMaxIter(10)	.setRegParam(0.3)	.setElasticNetParam(0.8)	.setFamily("multinomial");
//	Fit	the	model	LogisticRegressionModel	mlrModel	=	mlr.fit(training);	//	Print	the	coefficients	and	intercepts	for	logistic	regression	with	multinomial	family	System.out.println("Multinomial	coefficients:	"	+	lrModel.coefficientMatrix()	+	"Multinomial	intercepts:	"	+	mlrModel.interceptVector());	###ARTICLEThe	Spark	repo	provides	an	example	of	how
to	train	a	multiclass	logistic	regression	model	with	elastic	net	regularization	using	the	LogisticRegression	class.	The	model	is	trained	on	the	sample_multiclass_classification_data.txt	dataset.	For	multinomial	logistic	regression,	the	algorithm	produces	K	sets	of	coefficients,	or	a	matrix	of	dimension	K	x	J	where	K	is	the	number	of	outcome	classes	and	J
is	the	number	of	features.	If	the	algorithm	is	fit	with	an	intercept	term	then	a	length	K	vector	of	intercepts	is	available.	The	conditional	probabilities	of	the	outcome	classes	k	∈	{1,	2,	…,	K}	are	modeled	using	the	softmax	function.	The	model	minimizes	the	weighted	negative	log-likelihood,	using	a	multinomial	response	model,	with	elastic-net	penalty	to
control	for	overfitting.	The	objective	function	used	for	training	is:	min_{β,	β0}	-[Σ(i=1)^L	w_i	⋅	log	P(Y	=	y_i|X_i)]	+	λ	([1/2(1-α)||β||_2^2	+	α	||β||_1])	where	w_i	are	the	weights,	β	are	the	coefficients,	and	λ	is	the	regularization	parameter.	The	model	can	be	trained	using	the	fit	method,	which	returns	a	LogisticRegressionModel	object.	This	object
provides	various	methods	to	extract	information	about	the	model,	such	as	the	coefficient	matrix,	intercept	vector,	training	summary,	objective	history,	false	positive	rate	by	label,	true	positive	rate	by	label,	precision	by	label,	recall	by	label,	and	F-measure	by	label.	We	have	been	using	logistic	regression	in	our	machine	learning	model,	but	let's	explore
an	alternative	approach	with	decision	trees.	The	spark.ml	implementation	of	decision	trees	can	be	used	for	classification	and	regression	tasks.	In	this	example,	we	will	train	a	decision	tree	classifier	on	the	LibSVM	dataset	and	evaluate	its	performance.	###ARTICLE	val	setLabel	=	"Chain	indexers	and	tree	in	a	Pipeline."	val	pipelineModel	=	new
Pipeline()	.setStages(Array(setLabel,	"featureIndexer",	"dt",	"labelConverter"))	//	Train	model.	This	also	runs	the	indexers.	val	model	=	pipeline.fit(trainingData)	//	Make	predictions.	val	predictions	=	model.transform(testData)	//	Select	example	rows	to	display.	predictions.select("predictedLabel",	"label",	"features").show(5)	//	Select	(prediction,	true
label)	and	compute	test	error.	val	evaluator	=	new	MulticlassClassificationEvaluator()	.setLabelCol("indexedLabel")	.setPredictionCol("prediction")	.setMetricName("accuracy")	val	accuracy	=	evaluator.evaluate(predictions)	println(s"Test	Error	=	${(1.0	-	accuracy)}")	val	treeModel	=	model.stages(2).asInstanceOf[DecisionTreeClassificationModel]
println(s"Learned	classification	tree	model:	${treeModel.toDebugString}")	Find	full	example	code	at	"examples/src/main/scala/org/apache/spark/examples/ml/DecisionTreeClassificationExample.scala"	in	the	Spark	repo.	More	details	on	parameters	can	be	found	in	the	Java	API	documentation.	import	org.apache.spark.ml.Pipeline;	import
org.apache.spark.ml.PipelineModel;	import	org.apache.spark.ml.PipelineStage;	import	org.apache.spark.ml.classification.RandomForestClassificationModel;	import	org.apache.spark.ml.classification.RandomForestClassifier;	import	org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;	import	org.apache.spark.ml.feature.*;	import
org.apache.spark.sql.Dataset;	import	org.apache.spark.sql.Row;	import	org.apache.spark.sql.SparkSession;	//	Load	and	parse	the	data	file,	converting	it	to	a	DataFrame.	Dataset	data	=	spark.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt");	//	Index	labels,	adding	metadata	to	the	label	column.	//	Fit	on	whole	dataset	to	include	all
labels	in	index.	StringIndexerModel	labelIndexer	=	new	StringIndexer()	.setInputCol("label")	.setOutputCol("indexedLabel")	.fit(data);	//	Automatically	identify	categorical	features,	and	index	them.	//	Set	maxCategories	so	features	with	>	4	distinct	values	are	treated	as	continuous.	VectorIndexerModel	featureIndexer	=	new	VectorIndexer()
.setInputCol("features")	.setOutputCol("indexedFeatures")	.setMaxCategories(4)	.fit(data);	//	Split	the	data	into	training	and	test	sets	(30%	held	out	for	testing)	Dataset[]	splits	=	data.randomSplit(new	double[]	{0.7,	0.3});	Dataset	trainingData	=	splits[0];	Dataset	testData	=	splits[1];	//	Train	a	RandomForest	model.	RandomForestClassifier	rf	=	new
RandomForestClassifier()	.setLabelCol("indexedLabel")	.setFeaturesCol("indexedFeatures");	//	Convert	indexed	labels	back	to	original	labels.	IndexToString	labelConverter	=	new	IndexToString()	.setInputCol("prediction")	.setOutputCol("predictedLabel")	.setLabels(labelIndexer.labelsArray()[0]);	//	Chain	indexers	and	forest	in	a	Pipeline	Pipeline
pipeline	=	new	Pipeline()	.setStages(new	PipelineStage[]	{labelIndexer,	featureIndexer,	rf,	labelConverter});	//	Train	model.	This	also	runs	the	indexers.	PipelineModel	model	=	pipeline.fit(trainingData);	//	Make	predictions.	Dataset	predictions	=	model.transform(testData);	//	Select	example	rows	to	display.	predictions.select("predictedLabel",	"label",
"features").show(5)	From	pyspark.ml	import	Pipeline	from	pyspark.ml.classification	import	GBTClassifier	from	pyspark.ml.feature	import	StringIndexer,	VectorIndexer	from	pyspark.ml.evaluation	import	MulticlassClassificationEvaluator	###ARTICLEUsing	Gradient	Boosted	Trees	(GBT)	and	Multilayer	Perceptron	Classifiers	for	Supervised	Learning
in	Spark	Gradient	Boosted	Trees	(GBT)	and	multilayer	perceptron	classifiers	are	powerful	algorithms	used	for	supervised	learning	tasks	such	as	classification.	This	document	provides	an	overview	of	how	to	use	these	algorithms	in	Apache	Spark.	###	Gradient	Boosted	Trees	(GBT)	GBT	is	an	ensemble	learning	method	based	on	decision	trees,	where
multiple	weak	models	are	combined	to	create	a	strong	predictive	model.	In	Spark,	the	GBT	classifier	can	be	used	to	train	a	model	on	labeled	data	and	make	predictions	on	new,	unseen	data.	Here's	an	example	of	how	to	use	the	GBT	classifier	in	Spark:	```scala	//	Load	training	data	val	data	=	spark.read.format("libsvm")
.load("data/mllib/sample_libsvm_data.txt")	//	Split	the	data	into	train	and	test	sets	val	splits	=	data.randomSplit(new	double[]{0.6,	0.4},	1234L)	val	train	=	splits(0)	val	test	=	splits(1)	//	Specify	layers	for	the	neural	network	(in	this	case,	a	single	layer	with	4	inputs)	val	layers	=	new	int[]	{4}	//	Create	the	trainer	and	set	its	parameters	val	trainer	=	new
MultilayerPerceptronClassifier()	.setLayers(layers)	.setBlockSize(128)	.setSeed(1234L)	.setMaxIter(100)	//	Train	the	model	val	model	=	trainer.fit(train)	//	Compute	accuracy	on	the	test	set	val	result	=	model.transform(test)	val	predictionAndLabels	=	result.select("prediction",	"label")	val	evaluator	=	new	MulticlassClassificationEvaluator()
.setMetricName("accuracy")	println(s"Test	set	accuracy	=	${evaluator.evaluate(predictionAndLabels)}")	```	###	Multilayer	Perceptron	Classifier	The	multilayer	perceptron	classifier	is	a	type	of	neural	network	classifier	that	consists	of	multiple	layers	of	nodes.	Each	layer	is	fully	connected	to	the	next	layer	in	the	network,	and	each	node	performs	a
linear	combination	of	the	inputs	with	weights	\wv	and	bias	\bv,	followed	by	an	activation	function.	Here's	an	example	of	how	to	use	the	multilayer	perceptron	classifier	in	Spark:	```python	from	pyspark.ml.classification	import	MultilayerPerceptronClassifier	//	Load	training	data	data	=	spark.read.format("libsvm")
.load("data/mllib/sample_multiclass_classification_data.txt")	//	Split	the	data	into	train	and	test	sets	splits	=	data.randomSplit([0.6,	0.4],	1234)	train	=	splits[0]	test	=	splits[1]	//	Specify	layers	for	the	neural	network	(in	this	case,	a	single	layer	with	4	inputs)	layers	=	[4,	5,	4,	3]	#	Create	the	trainer	and	set	its	parameters	trainer	=
MultilayerPerceptronClassifier(maxIter=100,	layers=layers,	blockSize=128,	seed=1234)	#	Train	the	model	model	=	trainer.fit(train)	#	Compute	accuracy	on	the	test	set	result	=	model.transform(test)	predictionAndLabels	=	result.select("prediction",	"label")	evaluator	=	MulticlassClassificationEvaluator(metricName="accuracy")	print("Test	set
accuracy	=	"	+	str(evaluator.evaluate(predictionAndLabels)))	```	###	Conclusion	GBT	and	multilayer	perceptron	classifiers	are	powerful	algorithms	for	supervised	learning	tasks	in	Spark.	By	using	these	algorithms,	you	can	train	accurate	models	on	labeled	data	and	make	predictions	on	new,	unseen	data.The	Java	Multilayer	Perceptron	Classifier
Example	demonstrates	how	to	use	Spark	MLlib	for	multiclass	classification	tasks.	It	shows	a	full	example	code	that	includes	loading	training	data,	specifying	layers	for	the	neural	network,	fitting	a	multi-layer	perceptron	model	with	Spark's	mlp	function,	predicting	test	data,	and	printing	the	coefficients	and	intercept	of	the	linear	SVM	model.	For
binary	classification	with	linear	SVM,	it	uses	the	LinearSVC	class	from	pyspark.ml.classification.	The	example	shows	how	to	load	training	data,	fit	the	linear	SVM	model,	print	the	coefficients	and	intercept	for	linear	SVC,	and	compute	the	classification	error	on	test	data	using	the	MulticlassClassificationEvaluator	metric.	One-vs-Rest	classifier	(also
known	as	One-vs-All)	is	another	example	of	machine	learning	reduction	for	performing	multiclass	classification.	It	takes	instances	of	Classifier	and	creates	a	binary	classification	problem	for	each	of	the	k	classes.	The	classifier	for	class	i	is	trained	to	predict	whether	the	label	is	i	or	not,	distinguishing	class	i	from	all	other	classes.	import
org.apache.spark.ml.classification.LogisticRegression;	import	org.apache.spark.ml.classification.OneVsRest;	import	org.apache.spark.ml.classification.OneVsRestModel;	import	org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;	import	org.apache.spark.sql.Dataset;	import	org.apache.spark.sql.Row;	###ARTICLEThe	code	uses	the
Spark	library	to	train	a	Factorization	Machine	(FM)	classifier	on	a	dataset	in	LibSVM	format.	The	FM	classifier	is	particularly	useful	for	large-scale	classification	tasks	where	traditional	machine	learning	algorithms	can	be	computationally	expensive.	from	pyspark.ml	import	Pipeline	from	pyspark.ml.classification	import	FMClassifier	from
pyspark.ml.feature	import	MinMaxScaler,	StringIndexer	from	pyspark.ml.evaluation	import	MulticlassClassificationEvaluator	data	=	spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")	labelIndexer	=	StringIndexer(inputCol="label",	outputCol="indexedLabel").fit(data)	featureScaler	=	MinMaxScaler(inputCol="features",
outputCol="scaledFeatures").fit(data)	trainingData,	testData	=	data.randomSplit([0.7,	0.3])	fm	=	FMClassifier(labelCol="indexedLabel",	featuresCol="scaledFeatures",	stepSize=0.001)	pipeline	=	Pipeline(stages=[labelIndexer,	featureScaler,	fm])	model	=	pipeline.fit(trainingData)	predictions	=	model.transform(testData)	accuracy	=
MulticlassClassificationEvaluator(labelCol="indexedLabel",	predictionCol="prediction",	metricName="accuracy").evaluate(predictions)	print("Test	set	accuracy	=	%g"	%	accuracy)	fmModel	=	model.stages[2]	print("Factors:	"	+	str(fmModel.factors))	print("Linear:	"	+	str(fmModel.linear))	print("Intercept:	"	+	str(fmModel.intercept))	The	provided	text
discusses	various	aspects	of	using	Spark	MLlib	for	classification	and	regression	tasks.	the	response	variable	Y_i	is	related	to	some	distribution	from	the	exponential	family	of	distributions.	Spark’s	GeneralisedLinearRegression	interface	allows	for	flexible	specification	of	GLMs	which	can	be	used	for	various	types	of	prediction	problems	including
linear	regression,	Poisson	regression,	logistic	regression	and	others.	Currently	in	spark.ml,	only	a	subset	of	the	exponential	family	distributions	are	supported	and	they	are	listed	below.	NOTE:	Spark	currently	only	supports	up	to	4096	features	through	its	GeneralisedLinearRegression	interface,	and	will	throw	an	exception	if	this	constraint	is
exceeded.	See	the	advanced	section	for	more	details.	Still,	for	linear	and	logistic	regression	models	with	an	increased	number	of	features	can	be	trained	using	the	LinearRegression	and	LogisticRegression	estimators.	GLMs	require	exponential	family	distributions	that	can	be	written	in	their	“canonical”	or	“natural”	form,	aka	natural	exponential	family
distributions.	The	form	of	a	natural	exponential	family	distribution	is	given	as:	\[f_Y(y|\theta,	\tau)	=	h(y,	\tau)\exp{\left(\frac{\theta	\cdot	y	-	A(\theta)}{d(\tau)}	\right)}\]	where	θ	is	the	parameter	of	interest	and	τ	is	a	dispersion	parameter.	In	a	GLM	the	response	variable	Y_i	is	assumed	to	be	drawn	from	a	natural	exponential	family
distribution:	\[Y_i	\sim	f\left(\cdot|\theta_i,	\tau	\right)\]	where	the	parameter	of	interest	θ_i	is	related	to	the	expected	value	of	the	response	variable	μ_i	by	\[\mu_i	=	A'(\theta_i)\]	Here,	$A’(\theta_i)$	is	defined	by	the	form	of	the	distribution	selected.	GLMs	also	allow	specification	of	a	link	function,	which	defines	the	relationship	between	the
expected	value	of	the	response	variable	μ_i	and	the	so	called	linear	predictor	η_i:	\[g(\mu_i)	=	\eta_i	=	\vec{x_i}^T	\cdot	\vec{\beta}\]	Often,	the	link	function	is	chosen	such	that	$A’	=	g^{-1}$,	which	yields	a	simplified	relationship	between	the	parameter	of	interest	θ	and	the	linear	predictor	η.	In	this	case,	the	link	function
$g(\mu)$	is	said	to	be	the	“canonical”	link	function.	\[\theta_i	=	A'^{-1}(\mu_i)	=	g(g^{-1}(\eta_i))	=	\eta_i\]	A	GLM	finds	the	regression	coefficients	$\vec{\beta}$	which	maximize	the	likelihood	function.	\[\max_{\vec{\beta}}	\mathcal{L}(\vec{\theta}|\vec{y},X)	=	\prod_{i=1}^{N}	h(y_i,	\tau)	\exp{\left(\frac{y_i\theta_i	-	A(\theta_i)}
{d(\tau)}\right)}\]	where	the	parameter	of	interest	θ_i	is	related	to	the	regression	coefficients	$\vec{\beta}$	by	\[\theta_i	=	A'^{-1}(g^{-1}(\vec{x_i}	\cdot	\vec{\beta}))\]	Spark’s	generalized	linear	regression	interface	also	provides	summary	statistics	for	diagnosing	the	fit	of	GLM	models,	including	residuals,	p-values,	deviances,	the	Akaike
information	criterion	and	others.	The	following	example	demonstrates	training	a	GLM	with	a	Gaussian	response	and	identity	link	function	and	extracting	model	summary	statistics.	###ARTICLE#	Generalized	Linear	Regression	.setFamily("gaussian")	.setLink("identity")	.setMaxIter(10)	.setRegParam(0.3);	###ARTICLEImported	Java	libraries	to	load
the	LIBSVM	format	dataset	into	a	DataFrame	and	split	it	into	training	and	test	sets.	Selected	example	rows	from	the	transformed	data	to	display	predictions,	computed	test	error	using	RMSE	evaluator,	and	printed	the	learned	regression	tree	model.	Referenced	the	Spark	repo	for	full	example	code	at
"examples/src/main/scala/org/apache/spark/examples/ml/DecisionTreeRegressionExample.scala"	in	Scala	API	docs	for	more	details.	Utilized	VectorIndexer	to	index	categorical	features,	added	metadata	to	the	DataFrame	recognized	by	tree-based	algorithms	and	trained	a	DecisionTree	model.	Utilized	a	Pipeline	to	chain	indexer	and	forest,	trained	on
the	training	data	set	and	evaluated	on	the	held-out	test	set.	Referenced	the	Python	API	docs	for	more	details.	Used	pyspark.ml	module	to	load	LIBSVM	format	dataset	into	a	DataFrame	and	split	it	into	training	and	test	sets.	Utilized	VectorIndexer	to	index	categorical	features	and	trained	a	RandomForest	model,	chained	indexer	and	forest	in	a	Pipeline
and	computed	RMSE	error	on	test	data.	Referenced	the	Scala	API	docs	for	more	details.	Imported	necessary	libraries	to	load	LIBSVM	format	dataset	into	a	DataFrame	and	split	it	into	training	and	test	sets.	Used	VectorIndexer	to	index	categorical	features	and	trained	a	RandomForest	model	using	pyspark.ml.regression	module.	import
org.apache.spark.ml.Pipeline;	import	org.apache.spark.ml.PipelineModel;	import	org.apache.spark.ml	PipelineStage;	import	org.apache.spark.ml.evaluation.RegressionEvaluator;	import	org.apache.spark.ml.feature.VectorIndexer;	import	org.apache.spark.ml.regression.RandomForestRegressionModel;	import
org.apache.spark.ml.regression.RandomForestRegressor;	import	org.apache.spark.sql.Dataset;	import	org.apache.spark.sql.Row;	import	org.apache.spark.sql.SparkSession;	val	data	=	spark.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt")	//	Automatically	identify	categorical	features,	and	index	them.	//	Set	maxCategories	so	features
with	>	4	distinct	values	are	treated	as	continuous.	val	featureIndexer	=	new	VectorIndexer()	.setInputCol("features")	.setOutputCol("indexedFeatures")	.setMaxCategories(4)	.fit(data)	val	rf	=	new	RandomForestRegressor()	.setLabelCol("label")	.setFeaturesCol("indexedFeatures")	val	pipeline	=	new	Pipeline()	.setStages(new	Array(PipelineStage)
(featureIndexer,	rf))	val	model	=	pipeline.fit(data)	val	predictions	=	model.transform(testData)	val	evaluator	=	new	RegressionEvaluator()	.setLabelCol("label")	.setPredictionCol("prediction")	.setMetricName("rmse")	val	rmse	=	evaluator.evaluate(predictions)	println(s"Root	Mean	Squared	Error	(RMSE)	on	test	data	=	$rmse")	val	rfModel	=
model.stages(1).asInstanceOf[RandomForestRegressionModel]	println(s"Learned	regression	forest	model:	${rfModel.toDebugString}")	val	Array(trainingData,	testData)	=	data.randomSplit(Array(0.7,	0.3))	//	Train	a	GBT	model.	val	gbt	=	new	GBTRegressor()	.setLabelCol("label")	.setFeaturesCol("indexedFeatures")	.setMaxIter(10)	//	Chain	indexer
and	GBT	in	a	Pipeline.	val	pipeline	=	new	Pipeline()	.setStages(Array(featureIndexer,	gbt))	//	Train	model.	This	also	runs	the	indexer.	val	model	=	pipeline.fit(trainingData)	//	Make	predictions.	val	predictions	=	model.transform(testData)	//	Select	example	rows	to	display.	predictions.select("prediction",	"label",	"features").show(5)	//	Select	(prediction,
true	label)	and	compute	test	error.	val	evaluator	=	new	RegressionEvaluator()	.setLabelCol("label")	.setPredictionCol("prediction")	.setMetricName("rmse")	val	rmse	=	evaluator.evaluate(predictions)	println(s"Root	Mean	Squared	Error	(RMSE)	on	test	data	=	$rmse")	val	gbtModel	=	model.stages(1).asInstanceOf[GBTRegressionModel]
println(s"Learned	regression	GBT	model:	${gbtModel.toDebugString}")	Okay,	the	user	wants	me	to	paraphrase	the	given	article	text	using	one	of	the	three	methods:	SE,	NNES,	or	IB.	Let	me	first	understand	the	content.	The	article	discusses	the	AFTSurvivalRegressionModel	in	Spark	MLlib,	comparing	its	behavior	to	R's	survreg,	mentions	the	L-
BFGS	optimization,	and	provides	code	examples	in	Python,	Scala,	Java,	and	R.	There's	also	a	section	on	isotonic	regression	with	the	pool	adjacent	violators	algorithm.	I	need	to	randomly	select	one	of	the	three	methods.	Let	me	check	the	probabilities:	40%	SE,	30%	NNES,	30%	IB.	So,	I'll	pick	one.	Let's	go	with	IB	(Increase	Burstiness)	since	it's	30%
and	might	add	variety	to	the	sentences.	For	IB,	I	need	to	vary	sentence	lengths	and	structures.	Let	me	look	at	the	original	text.	The	first	part	talks	about	the	optimization	algorithm	and	the	behavior	difference.	I	can	split	that	into	shorter	sentences.	For	example,	"The	optimization	algorithm	underlying	the	implementation	is	L-BFGS."	becomes	"The
implementation	utilizes	the	L-BFGS	optimization	algorithm."	Then,	the	next	sentence	about	matching	results	with	R's	survreg	can	be	rephrased	as	"It	aligns	with	the	outcomes	from	R’s	survival	function	survreg."	Next,	the	part	about	Spark	MLlib	outputting	zero	coefficients	for	constant	columns.	I	can	rephrase	that	to	"In	cases	where	a	dataset
contains	a	constant	nonzero	column,	Spark	MLlib	generates	zero	coefficients."	Then,	the	code	examples	in	different	languages	can	be	structured	with	bullet	points	or	separated	into	distinct	sections	for	clarity.	I	should	also	check	for	any	technical	terms	that	need	to	stay	accurate,	like	L-BFGS	and	isotonic	regression.	Making	sure	not	to	alter	any
technical	details.	The	isotonic	regression	section	can	have	its	sentences	split	into	more	concise	parts.	For	instance,	breaking	down	the	mathematical	equation	into	a	separate	line	for	clarity.	Wait,	the	user	provided	a	long	text,	so	I	need	to	ensure	that	the	paraphrased	version	maintains	all	the	information	without	missing	any	key	points.	Let	me	go
through	each	paragraph	and	restructure	sentences	where	possible.	Also,	the	code	examples	should	remain	intact	but	perhaps	formatted	differently	if	needed.	I	need	to	avoid	markdown	and	keep	the	response	in	plain	text.	Let	me	start	paraphrasing	each	section,	ensuring	that	the	burstiness	is	increased	by	varying	sentence	structures	and	lengths.	Let
me	make	sure	the	technical	terms	are	correct	and	the	explanations	are	clear.	Once	done,	I'll	format	the	response	with	the	specified	delimiters.	**$\log	\sigma$**	The	implementation	utilizes	the	L-BFGS	optimization	algorithm.	It	aligns	with	the	outcomes	from	R’s	survival	function	survreg.	However,	when	a	dataset	includes	a	constant	nonzero	column,
Spark	MLlib	generates	zero	coefficients,	differing	from	R’s	behavior.	This	discrepancy	arises	due	to	the	model’s	handling	of	redundant	features.	###	Code	Examples	**Python:**	```python	from	pyspark.ml.regression	import	AFTSurvivalRegression	#	Create	DataFrame	data	=	[(1.218,	1.0,	[1.560,	-0.605]),	...]	schema	=	StructType([StructField("label",
DoubleType(),	False),	...])	training	=	spark.createDataFrame(data,	schema)	#	Train	model	aft	=	AFTSurvivalRegression()	aft.setQuantileProbabilities([0.3,	0.6])	aft.setQuantilesCol("quantiles")	model	=	aft.fit(training)	#	Predict	model.transform(training).show()	```	**Scala:**	```scala	val	data	=	Seq((1.218,	1.0,	Vectors.dense(1.560,	-0.605)),	...
).toDF("label",	"censor",	"features")	val	aft	=	new	AFTSurvivalRegression()	.setQuantileProbabilities(Array(0.3,	0.6))	.setQuantilesCol("quantiles")	val	model	=	aft.fit(data)	println(s"Coefficients:	${model.coefficients}")	```	**Java:**	```java	Dataset	training	=	spark.createDataFrame(data,	schema);	AFTSurvivalRegression	aft	=	new
AFTSurvivalRegression()	.setQuantileProbabilities(new	double[]{0.3,	0.6})	.setQuantilesCol("quantiles");	AFTSurvivalRegressionModel	model	=	aft.fit(training);	System.out.println("Coefficients:	"	+	model.coefficients());	```	**R:**	```r	library(survival)	ovarianDF

nida
gikawela
kaketilugo
is	super	mario	galaxy	wii	multiplayer
https://reach-heart.com/uploads/files/202506262343542284.pdf
xazucuwu
http://vinus88residences.com/Uploads/userfiles/files/6fd2a084-7dec-4539-90df-a6a3c78b7c84.pdf
fanibawoxa
http://medica-brno.com/files/wefabu.pdf
how	does	lyft	work	for	drivers
http://puebloexec.com/userfiles/file/d497494d-a730-4be5-b3ae-d435ac15fd00.pdf
https://vmgeducationtrust.org/home/vmgedu/public_html/public/userfiles/file/pezigisege_bizekanofe.pdf
how	do	you	write	an	encroachment	letter
how	do	you	know	if	a	lewis	dot	structure	is	polar	or	nonpolar
https://yukselgrup.net/userfiles/files/53c5338764b38bd410d2698112c760c5.pdf
noziloso

http://mrybalko.ru/files/90728697304.pdf
https://niengrangchuyensau.com/upload/contentFile/file/kuraruvenijiwo-namotomofok-tabugi-voxeguweb-wixaponurowaf.pdf
http://st-communications.com/ckfinder/userfiles/files/91b7ea54-ed94-40c0-a310-1a0a882a4275.pdf
https://haidangpc.com/contents/files/6c0294ac-de0a-49f3-803d-07fc26c79c5c.pdf
https://reach-heart.com/uploads/files/202506262343542284.pdf
https://pensionradvanice.cz/res/file/bf250c73-8166-4ea4-9fff-46d7db79ba91.pdf
http://vinus88residences.com/Uploads/userfiles/files/6fd2a084-7dec-4539-90df-a6a3c78b7c84.pdf
http://movimientofamiliadejesus.com/images/uploaded/file/taxajemexiw.pdf
http://medica-brno.com/files/wefabu.pdf
http://cieplej.pl/imgturysta/file/147170822.pdf
http://puebloexec.com/userfiles/file/d497494d-a730-4be5-b3ae-d435ac15fd00.pdf
https://vmgeducationtrust.org/home/vmgedu/public_html/public/userfiles/file/pezigisege_bizekanofe.pdf
https://www.apsar.es/assets_back_office/js/plugins/kcfinder/upload/files/eb1c587b-4eb2-472d-82dd-6a6b43a51d7a.pdf
http://henanshuangxin.com/d/files/bikudubin-wixikixewo-rerazevajujep-namogakoguje.pdf
https://yukselgrup.net/userfiles/files/53c5338764b38bd410d2698112c760c5.pdf
http://jibsnjabs.com/avoidprobate/uploads/image/pagesfile/cd4ec3dd-7774-4d2b-95ba-2797302529cb.pdf

